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ABSTRACT

An analysis of ion collection to a rocket borne ion probe is
presented. The analysis is performed for both the planar and spherical
geometry probes taking into account the presence of the ion sheath which
surrounds the probe. From the above, the error introduced into the
operation of the probe by the presence of the ion sheath is determined.

The analysis is applied to the high altitude ion probe which was
flown on NASA Javelin 8.29 on May 19, 1965 as part of the Mother -
Daughter project. Less than 2% error was attributed to the presence of
the sheath for probe operation to an altitude of 500 km. At 500 km. the
sheath size approaches the probe dimension, and the probe ceases to
operate accourding to ram theory. From the analysis, design suggestions
are made which theoretically enable an ion probe of this type to operate

with less than 2% sheath error to an altitude of 1000 km.

-i-



CHAPTER I
INTRODUCTION

1.1 Statement of the Problem

A planar-disc, retarding potential ion probe was flown
on a rocket from Wallops Island, Virginia, on May 19, 1965. The
primary purpose of the experiment was to measure ion densities
between 300 and 1000 kilometers in the upper atmosphere. The
data from this experiment was analyzed using ram theory as dis-
cussed by Whipple (1959). A complete description of this
experiment is given in the scientific report by D. J. Hoffman
(1966).

Ram theory assumes that the ion sheath which surrounds
the probe has a negligible effect on its operation. For this
reason, ram theory can be applied only when the sheath thickness
is small in comparison with the probe dimensions. It is the
purpose of this analysis to determine the error introduced by
completely neglecting the effects of the ion sheath.

This analysis will be performed for both planar-disc
geometry and the spherical geometry ion probes. It is hoped
that a comparison in the sheath effects of these two geometries
will give a better understanding into the relative advantage of
using a planar geometry probe instead of a probe of curved
geometry.

Finally, the planar-disc sheath analysis will be applied
to the ion probe experiment in evaluating the error which is

introduced by the use of ram theory. The analysis will serve



as a basis for proposing probe modifications which would possibly
improve the accuracy of its operation.

1.2 Historical Background

The Langmuir probe technique for measuring concentrations
of charged particles and the temperature of electrons in discharge
plasmas provides a valuable method for making such measurements
from space vehicles. The use of such a probe in plasma research
was originally conceived by Langmuir, and Mott-Smith (1926).
Langmuir based his theory on thermodyamic equilibrium and a
Maxwel lian distribution of positive ion and electron energies.
Experimentally, an electrode is inserted into a plasma, and the
current to the electrode is measured as a function of the applied
electrode voltage. From the resulting current-voltage
characteristics, the charged particle energy distributions and
densities are obtained.

The initial attempt to use a Langmuir probe on a space
vehicle was made by Hok and Dow in 1946 as described by Hok,
Spencer, and Dow (1953). Their experiment consisted of a
rather large probe, in the form of a conic frustrum, mounted
on the nose of a V-2 rocket, which was fired from White Sands,
New Mexico. They considered several sources of error which
were responsible for the rather poor results. It was concluded
that the ambiguity of the probe geometry, the existence of
negative ions, electron emission from the probe, the effect of
the earth's magnetic field, and the air flow about the rocket

caused considerable error in the measurements.




R. L. F. Boyd (1950) was the first experimenter to success-
fully employ the use of a controlling grid on a laboratory probe.
The basic Langmuir probe was modified by placing a screen grid
between the plasma and the collecting electrode. When the grid
was biased at +48 volts, only electron current was collected.
Positive ion current could be collected at a grid voltage of -60
volts.

By his experimental work, Boyd was able to reveal that
the flux of electrons to the probe is not solely determined by the
random thermal motion of the electrons as earlier theorized by
Langmuir, but that the process is of a more complicated nature.

Additional grids were added by others, Hinteregger (1960),
Hale (1961), and Bourdeau (1962) to suppress photo-electrons and
secondary emission. The problems associated with fabricating
a multiple grid configuration led to the development of the planar
geometry gridded probe. This type of probe is frequently
referred to as an ion trap.

Hinteregger (1960) successfully utilized a set of four
grids to measure positive ion and electron densities, accounting
for photo-electrons, secondary electrons, and negative ions to
an altitude of 234 km. He realized that the accuracy of his
experiment was dependent upon how well the vehicle potential
could be estimated and how negligible were the sheath effects.

A four-grid ion probe was launched from Wallops Island,
Virginia in 1960 on the scout vehicle (NASA, ST-II) as described

by L. C. Hale (1961). The importance of this experiment was



that Hanson (1962), using the ion probe data that was presented

by Hale, deduced the existence of helium ions above 1200 km.
Bourdeau (1962) mounted a collecting electrode below a

gridded aperture on the body of the explorer VIII Satellite. A grid

biased at -15 volts was used to suppress photo electrons. As

the Satellite rotated in the sun, no additional current was detected

which implied that all photo electrons were being suppressed.
From this retarding potential experiment, Bourdeau was able
to obtain values of positive ion concentration, and the ratio of
atomic helium to oxygen ion. He also confirmed the belief that

0+ ions predominate up to 800 km at night and.up to at.least

1500 km during midday, while helium ions predominate from 800

to at least 1200 km at night and from 1500 to at least 1800 km at
midday.

The use of a spherical ion-trap on rockets is described
by Sagalyn and Smiddy (1963). In their instrument, the

collector and grid voltages were swept to give measurements of

both electron and positive ion density. In theory they considered

that the plasma exhibits a Maxwellian velocity distribution, the
vehicle velocity to be a variable with respect to the most
probable ion velocity, and the mean free path is large in
comparison to the probe dimensions. Using this theory to
analyze their experimental data, they found agreement within
20 per cent to simultaneous ionosonde data.

W. C. Knudsen (1966) used a planar-gridded ion trap to

determine the ion concentration between 200-600 km. A




discussion of the possible sources of error with a probe of this
type is given by Knudsen. An analysis of the sheath effects is
made using the assumption that the potential varies as 1/r and
that the planar probe can be approximated by a hemi sphere.
Knudsen shows the error introduced by sheath effects to be as

great as 40 per cent for the cases considered.



CHAPTER I
DEVELOPMENT OF THE THEORY

2.1 Ion Current to a Retarding Potential Probe

The expression for the ion current, I, to a
retarding potential probe has been previously derived and
is thoroughly discussed by Whipple (1959). The assumptions
made in deriving an expression for the ion current are that
the sheath is thin and parallel to the face of the probe;
the grids are equipotental surfaces; the grids and collector
extend to infinity; the transparency of the grids is not
dependent on the retarding potential or the angle of attack;
all ions which are collected originate in the undisturbed
plasma, and the ion mean free path length is large
compared to the sheath and probe dimension.

A coordinate system is chosen fixed to the vehicle
with the positive x-axis in the direction of vehicle
motion. The relative velocity component, Vr’ can be
written as

v. =C. v (2.1)

where C is the thermal ion velocity in the x-direction, and
VR is the vehicle velocity. A Maxwellian velocity

distribution is assumed and is given by

2

.mC_

T = ———— C
dc \/ZKTw/m

where N = the neutral ion density




K = Boltzman's constant
= ion temperature
m = 10n mass.

The general expression for the collector current is given

I= faeAVrdN (2.3)

where A is the area of the collector plate, a is the grid

in equation (2. 3)

transparency coefficient, and q is the ionic charge. Only
those ions with a kinetic energy toward the rocket greater
than the retarding potential barrier of the probe will be

collected, that is anion will be collected if:

—?}- mVr2->eq)

This current can be written as

VZe[}[)/rn -(V_AVg) 2m_

acAN V e 2kT

\/2KTw/m oof T

- av_ (2. 4)

where d) is the retarding potential. Integrating equa-

tion {2.4) yields:

2kT —x2
V——— e
mT

I = aeANV (-l-+-l—erf(x) + —) (2.5)
R "2 2 2V
R
where x = 5 (Vo -\ / 2ed /m)



X 2

2
and E RF(x) = 7‘?_ o( e’ ay
Equation (1.5) is the classical expression for ion current to
a retarding potential ion probe, and is valid only when the
thermal velocity of the ions is small in comparison to the

rocket velocity.

2.2 Ram Current Expression

When the vehicle potential, VO, goes negative so
that nearly all ions in the path of the collector plate are
collected, equation (2.5) reduces to the Ram current express-
ion
I-= AaeNVRCose (2.6)
where VRCOSB is the component of vehicle velocity normal

to the collector plate.

2.3 Existence of an Ion Sheath

When an undi sturbed body is placed in a plasma such
as the jonosphere, electron and ion currents flow from the
plasma to the body. The body will acquire a net negative
charge or negative equilibrium potential due to the large
thermal velocity of the electrons compared to the thermal
velocity of the ions. The electron current to the body is
produced only by those electrons energetic enough to overcome
the equilibrium potential. At equilibrium, the total
current to the body is zero with the electron current
balanced by the positive ion current which is relatively

independent of potential. Due to the small thermal




velocity of the ions, the region which surrounds the body
is deficit in electrons; hence, it will have a net positive
charge which is referred to as the ion sheath.

2.4 Vehicle Potential

Since at equilibrium the total current to a body
emersed in a neutral plasma is zero, a negative potential
must exist on the body. Neglecting r.f. affects and
photo-emission the vehicle potential, VO, is given in
equation (2. 7) for a plane conducting body.

kT TeM+

V. =—2% in (2.7)
2e T M
+ e

Te and T+ are the electron and positive ion temperatures,
while Me and M+ are their masses. Assuming an ionic
constituent of 28 A. M. U. and thermodynamic equilibrium,

equation (2.7) reduces to

where T is the kinetic gas temperature.

2.5 Idealized Sheath Model

As discussed by Jastrow and Pearse (1957), the charge
di st ribut ion which surrounds a rapidly moving body
emersed inaneutral plasma is Maxwellian and is given

by expression (2.9):
q@/kT
pa.q N+—Nee (2.9)
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where p = net charge density which surrounds the body and

is a function of position

q = electron charge

N+ = neutral plasma positive ion density
Ne = neutral plasma electron density

CI) = potential as a function of potential
T = electron temperature

k = Boltzman constant

which holds whenever

kT
"__ << L1
M+ VR . (2 0)

In a neutral plasma N+ = Ne’ hence expression (2.9) can be

rewritten.

99
02qN |1-e KT (2. 11)

From equation (2.11), it is observed that when the
potential, (i), equals zero, the net charge density is also
zero or the plasma is neutral. At the surface of the body
the potential, (#), is equal to the vehicle potential. From
expressions (2.8) and (2.11) the charge density at the surface

of the probe can be determined and yields:

pxzqgN|l-e _s'ﬂx,qn
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Hence the charge density near the surface of the probe is nearly
equal to the neutral plasma ion charge density. The expmential

term in equation (2.11) is negligible for potentials,

(t) | ;.k_T Figures (2.1) and (2.2) show the charge density
2q

about a rapidly moving probe as a function of potential.

KT kT

Since V_>> ' 3q is considered equal to zero in the

o 2q
idealized sheath model for a rapidly moving probe. Figure
(2.2) shows the idealized sheath charge distribution. The sheath
is assumed to have a sharply defined edge at 4) = 0.

2.6 Sheath Thickness

The sheath thickness can be determined using the
idealized sheath model. Poisson's equation is solved and

the following boundary conditions are utilized.

b=V atx=o
o
c|> ~0atx=d
where d = sheath thickness.

In solving Poisson's equation the charge density is constant
within the sheath and is equal to qN+ as explained in
Section (2.5).

The two cases of interest are the spherical and
planar-disc probes. Jastrow and Pearse (1957) derive an
expression for the sheath thickness of a spherical probe

surrounded by a thin sheath.




CHARGE DENSITY

CHARGE DENSITY

12

QN4
0 + 4 - ¢ (x)
Vo= 5.45 %{- o
POTENTIAL
ACTUAL SHEATH DENSITY
FIGURE 2.1
P 4
N4+
+ ¢ (x)
Vo= 5.4 5T 0
POTENTIAL

IDEALIZED SHEATH DENSITY
FIGURE 2.2




13

d =, |—2° (2.11)

A derivation for the sheath thickness of a

planar-disc probe is given in Appendix A. The expression

is valid for a thin sheath and is given by

eOVO ZeOV 2 ZEOV
d=-=22 4| 2)% - 2 (2.12)
qNma walNq Ng

where a = the radius of the disc. Equation (2.12) reduces to

equation (2.13) for a very thin sheath.

2V €
d = —22 (2.13)
Ngq

Equation (2.13) is identical to the expression that Jastrow and

Pearse derived for the spherical probe.
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CHAPTER III
THEORY MODIFICATION

3.1 Ion Trajectory Analysis to a Spherical Probe

To obtain a first order sheath correction, simple plasma
orbit theory will be applied. The motion of a single particle will
be determined as it passes through the sheath to the collecting
probe. By choosing a coordinate system which is fixed with
respect to the probe, the ion enters the sheath at the probe
velocity assuming that the ion thermal velocity is much less than
the vehicle velocity. Figure (3.1) illustrates the concept of
treating a single particle penetrating through the sheath to the
probe. Once the motion of the single particle is determined, the
actual current to the probe will be determined by superposing the
motion of all the single particles.

Considering the earth's magnetic field as having a
negligible effect on the motion of the ion, the forces acting
on the particle are entirely due to the electric field which
exists within the sheath. This field can be calculated by solving
Poisson's equation for the potential. As mentioned previously,
the charge density within the sheath is equal to the positive ion
density of the medium. Thus Poisson's equation can be written

in spherical coordinates,

2
Sy el o8 zov . 1 d (sinadYy L _2V_ ., _ Ng

oy (r ) 7 -
\ 1‘2 dr or r2 sin® 06 59 r2 sinzeaﬁ‘Z © o
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which simplifies because of symmetry yielding:

2, _d°v .2
r

The constants A and B are evaluated using the following two
boundary conditions. The potential at the sheath edge, which
corresponds to r=b, is taken to be zero while the potential at
the surface of the probe, r=a, is equal to the probe potential d)o'

Equation (3.1) can be rewritten:

V:f(—]:-)--&r+7? (3.2)
where
2
)0 [ct)o 6e ):|a
(b~ a)
and

(o

o

By taking the gradient of the potential the electric field can be

obtained, and is written in equation (3. 3).
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_ ¥£b _pr
E_-= Vv-‘f s +55 (3.3)

Er is the radial electric field and is directed such that positive
ions accelerate towards the probe. Equation (3.3) can be sub-
stituted into the Lorentz force equation and obtain the force

acting on the particle as it moves through the sheath.

(3.4)
where m = the mass of the ion

A . . . .
ar = the unit vector in the radial direction

Substituting equation (3. 3) in for the electric field, equation (3.5)

2
d'r _ fb pr
m—d > —q[—2+3€:| (3.5)
t r o

By rewriting the left hand side of equation (3.5)

d |l dr dt. pr
dtl:( } ﬂ'[_“L

and separating variables, both sides of the equation can be

is written,

integrated, yielding:
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2
m  dr 2 _ b pr
ALY B ks el A 3-8

Since -g—:is the radial component of the ion velocity, the constant
C, can be evaluated. Equation (3.6) relates the kinetic energy
of the particle to its position within the sheath, and is readily
solved giving the velocity of the ian as a function of position.

In this analysis, the restriction made is that the sheath
thickness is much smaller than the radius of the probe. This is
a necessary condition which guarantees that the shape of the
sheath is spherical about the probe. Remembering that this
solution of Poisson's equation is valid only for a spherical sheath.

For a thin sheath, it can be shown that:

qpr2 Zebf
3meo << mr

Hence, equation (3.6) can be rewritten neglecting the smaller

of the two terms and solving for the velocity,

_ 1/2
V. =- L- 2t f +C J
r mr 1

The constant C1 is evaluated at the sheath edge where the radial

(3.7)

component of the ion velocity equals -V_Cos 90. V., is the

R R

rocket velocity and 90 is the angle at which the ion enters the
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sheath. Restricting this analysis to small angles, CosB-o
nearly equals unity. This condition restricts particle
collection to the region near the center of the collecting
surface. Under this condition, C, is evaluated:

1

1
C—ZV

2 +Ze”g
1 m

R

The radial component of ion velocity is then givenin

equation (3.8)

“f —--1/2
_dr _ |2e b 2
Vr—a-%-—— p— (l—r)+VR (3.8)
By separating variables, equation (3.8) yields:
5 -1/2
_ ]2e b 2 dr
By defining:
-1/2
_ Ze‘? b 2
f(r) = - —m (1—-1‘—) + VR
equation (3.9) can be expanded about r=a in terms of f(a). The
first three terms are given in equation (3.10).
(r-a)®
f(r) = f(a) + (r-a)f'(a) + E22L f@) + . . . (3.10)
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where the primed superscript denotes the derivative with respect
to r. Egquation (3.9) can be rewritten by substituting in the

expansion for f(r).

(r-a)2

dt = f(a)dr + (r-a)f'(a)dr + >

f''(a)dr + . . . (3.11)
Term by term integration of equation (3.11) yields the total time
required for an ion entering the sheath to be collected. The

limits ont are from time equal zero to the total time Tp, and

the limits oh r are from r=b to where the ion is collected, r=a.

TP a a
TP = S dt = f(a) S'dr + f'(a) S‘ (r-a)dr +
o b b
& 2
£1(a) 5 (ria) ar + . . . (3.12)
b
Ty, = (a-b)i(a) - -12—(a—b)2f'(a) +%—(a-b)3f"(a) ... (3.13)

For a thin sheath, T_ is nearly equal.to the first term of the

P

expansion. Evaluating the thin sheath approximation for TP :

-1/2

Tp = -(a-b) Z—r‘;i 1-2)+vy? . (3.14)

The velocity which an ior enters the sheath, -VR,

can be split into two components; one is in the radial
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di rection, Vr’ and the other perpendicular to the radial
direction, \Q_, as shown in Figure 3.2. The radial component
of ion velocity is given by -VRCos 90 which for small angles is
nearly equal to -VR. The perpendicular component of ion velocity
is written as -VRSinB which for small angles can be approximated
by -Vg 8.

Since YLis perpendicular to the electric field, this
component of velocity is conserved for small angles of attack.
The total time, TP’ required for an ion entering the sheath to
be collected is given in equation (3.14). Hence, the displacement:
of the ion inthe (1) di rection equals V| T,

The ion displacement, R, in the radial direction can be

written:

T
R = f Vr(t) dt
(o]

For small angles of attack, R is nearly equal to the sheath
thickness, (b-a), and is a displacement in the minus radial
direction.

Initially, when the particle enters the sheath, the x-

component of position is given by:

x = bSin® . (3.15)
(o] (o]
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When the particle strkes the surface of the probe, the resulting

x-component of its position is written in equation (3.16)

Xe = x0T Xy . (3.16)

X3 is the total deflection in the x-direction of the ion traversing
the sheath, and can be written by adding the two x-components

of the perpendicular and radial displacement, x_

1

and x ,
r

xd'—'x_L+xr (3.17)
where
XJ_ = V_L TPCOSBo (3.18)
and

x_ = (a-b)Sn@ - (3.19)

Thus, the total x-component of deflection can be written by

substituting in equations (3.18) and (3.19) into equation (3.17).
=V, T_Cos eo + (a-b)Sind o (3.20)

%d P

The final x-component of position given by equation (3.16) can be

written.



24

V_LTPCOSG + a51n6 (3.21)

Equation (3.21) reduces for small angles of 8 o to

= (V, T +a)8 : (3.22)

By subtracting the initial x-component of the particle's position

from X the deflection can be determined

o - l:(b—a) - VRTP] o, - (3.23)

The ratio of the deflection, &%, to the initial x-component of

position, x _, is given in equation (3.24).

%‘ :%Eb—a) - VRTP:,, (3.24)

Substituting in for TP’ equation (3.24) can be rewritten.

(e]

-1/2
Ax _ (b-a) 2q p 2 2 2 (3.25)
= - 5 I'VR[—Tm eo (b —a)-Vo-i-VR

For a thin sheath approximation:

b® - a’x2ad . | (3. 26)
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Equation (2.11) gives an expression for the sheath thickness of a
spherical probe in terms of the charge density. Solving equation
(2.11) for the charge density, and together with relationship

(3.26), equation (3.25) can be rewritten.

-1/2
Ax _d quo 2a (3.27)
— = L -l -—— 1+ %5)
X b 2 3d
o mVR

3.2 Error Analysis of the Spherical Probe

The positive ion current to the spherical probe is
comprised of two components. One component is the ram current
which is explained in sections (2.1) and (2. 2) and is given by

equation (2. 6).

IR = AaeNVRCose
Remembering that expression (2. 6) is valid only when the
vehicle velocity is much greater than the ion thermal velocity, and
when the ion sheath is thin.

The other component of ion current is composed of only
those ions which are deflected to the collector as they traverse
the sheath. In Ram theory, this component is neglected. This
component of current will be referred to as the sheath current

and is given by equation (3. 28).
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2
I, =gNVpa {[QXA—OX+ 1)Xo] T - TI'XOZ (3.28)

% is given in equation (3.27), while X is taken to be the radius
o

of the collector plate. Since Trxo2 is equal to the area of the
collector plate, A, the total ion current to the probe can be

written:

XX 2
= + =
I I Ig = QNV cA(= + 1)

r=Ig g (3.29)
[o]

By defining an effective area, Aeff’ equation (3.29) can be

rewritten:

Ip = qNVgoa o

where

The error introduced by using Ram theory and neglecting the

sheath current is

Aeff_A

Per cent error = E =
A
eff

x 100 per cent, (3.30)
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Substituting in for both A and Aeff

E=[1-+17%x100per cent. (3. 31)

Quite interesting is the fact that the error is independent of the
collector size as long as the collector plate is small when
compared to the probe size. This is reasonable due to the fact
that there is a corresponding increase in the ram current to the
increase in sheath current brought about by the increase in
collector size. Hence, the error can be determined for the
spherical probe, requiring only the knowledge of a/d, and
VO/VRZ, realizing that d/b can be determined from a/d.

3.3 Ilon Trajectories to a Collecting Planar-Disc Probe

Treating the planar-disc probe in a manner similar to
the spherical probe, the motion of a single particle as it passes
through the sheath will be determined. A coordinate system is
chosen fixed to the probe with the positive z-axis in the direction
of vehicle motion as shown in Figure 3.3. The restrictions which
were imposed on the spherical probe will be placed on this
analysis. The analysis is valid only when collection is made very
near the center of the probe, and the sheath thickness is small
in comparison to the probe dimension. It should also be pointed
out that the problem will be treated using the idealized sheath
model as explained in Section (2.5).

The potential of a planar-disc is obtained by solving

Poisson's equation. The solution of Poisson's equation in
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cylindrical coordinates is given by equation (3. 32).

2V -1 >
ﬂiz 1To [tan (G(r’z))} -%.e_z + kz (3.32)

o

where

_ 1/27 72
G(r,z) = /Za{r -a +L(r2—a2)2+4a2zﬂ } (3.33)

A
{ [tan [G (r=0, d_-I ZP— 51 (3.34)

a

and

radius of the disc

d sheath thickness

Poissan's equation was solved satisfying the boundary conditions
of the idealized sheath model. That is, the potential at the
surface of the probe equals the probe potential, Vo’ while at
the sheath edge, the potential equals zero.

The electric field which is confined within the sheath is

evaluated by taking the gradient of the potential.

@
N'_QGD_
N >

E-yg--gtt-

Hence; the r-component of the electric field is given in equation
(3.35).

= .2Y ]:.l—a 4141252 l/Z:l (3. 35)
T \E.wa [_az+ (a 4402, z 1/2_] 1/2
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The z-component of the electric field can be written:

-1

-
E = -a’G(r, z) :rz ’ az +V rz_a2)122+4 252 -l *, PZ _k . (3.36)
z 2. ) + 4a 2‘] / ‘o

T

By restricting the analysis to the thin sheath and small angle

approximations, equations (3.35) and (3.36) can be simplified.

2V
E = 30 zZ. T (3.37)
r mTa
V zZ
EZ:W_; +§_-k (3.38)

It should be pointed out that as an ion traverses the sheath the
deflection. Ar, will be small when compared to the sheath
thickness, d. Hence, the radial component of electric field

will vary only with z and can be written:

E = °o°., (3.39)

where T is the distance from the z-axis that the ion enters the
sheath.

Neglecting the effect of the earth's magnetic field
on the motian of a collected particle, the electric field will

contribute the only force acting on the particle. Hence the
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Lorentz force equation can be written for the force acting on an

ion in the z-direction:

deZ

where VZ = ion velocity in the z-direction
m = the mass of the collected ion
q = electron charge.

By substituting in for the electric field, equation (3.41) can be

written.

dZ v
z 92 ]p%Z2 L _° _ g (3. 41)
m|e Ta
dt
Rewri ting equation (3.41),
1 dz,2 _gq pz Vo Co
@ m (€—<;-+_1ra - k)dz +— (3.42)

and solving for the z-component of ion velocity yields:

2 pz2 Vo 1/2 (3.43)
= (ZE + (Tl‘a_ —k)Z) + CO . ‘

v
zZ m

The constant of integration, CO, is evaluated by applying the
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boundary condition that VZ = -VR at z = d.

2 v
c =v 2 -29pd" (o )4 (3.44)
m Eo

™
By expanding equation (3.43), it becomes possible to integrate

the expression term by term and obtain a relation between time

and the z-component of position. Therefore f(z) is defined to be

5 ;2 v, -1/2
flz) = 'i'\fz? t b= K)z) + C_ (3.45)

which is expanded in a Maclaurin series giving equation (3.46).

2
f(z) = £(0) + z£'(0) +-§—-—f"(0) .. (3. 46)

Equation (3.43) can be rewritten in the expanded form.
ZZ
dt = [f(o) +2£1(0) +2-£"(0) + . . :l dz (3.47)

Equation (3.47) can be integrated term by term between the

appropriate limits.

t z 2
{ dt =(f ljf(o) + z£'(0) +%—f"(0) + .. ] dz (3.48)
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For the thin sheath approximation it is necessary to consider only
the first term of the expansion. Thus, an expression for t in terms

of the position, z, can be written.
2 A" -1/2
- 2 _2qfpd | o _ :[ : :
t = I:VR mEEO + (Tr k)d (z-d) (3. 49)

Equation \3.49) can be solved for z, yielding an equation for

z as a function of the time.
2 v 1/2
- 2 2q {pd o)
Z(t) = [VR - —EEG— + \TT_' k){[ t +d (3- 50)

By substituting equation .3.50) into equation (3.39) an
expression for the radial component of the electric field

acting on the particle as a function of time i~ determined.
2V 2 A% 1/2
_ o) _ 2 2q | pd O
E, = 1Taal”oé ' VR T m|ze T k)‘ﬂ t \3.51)

Using the Lorentz equation, the radial force acting on a

collected ion can be written:

(3.52)

Substituting equation {3.51) in for the radial component of the

electric field
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2 qu r { \% ] 1/2
dr Rd 9
mg- [ b k)d ¢ (3.53)

By separating the variables, equation (3.53) can be integrated

directly to obtain the radial component of the particle's velodity.

4 zqv 0 s aod? . Vo ] 1/2 ,z‘? .
= = t —_ 7+
= e+ | 1(3.54)

The constant of integration, Cl’ is evaluated at time equal to

zero when the ion has no radial component of velocity. Remember-
ing at time equal to zero, the ion is at the edge of the sheath.
Solving for the constant at time equal to zero yields C1 = 0.
Integrating the radial component of the ion velocity yields the
radial component of displacement. The limits on t are from

time equal to zero to time equal to T the time required for

P’
!
‘ an ion which enters the sheath to be collected. TP can be
evaluated by substituting z=0 into equation (3.49).
2 -1/2
v 2 .24 [ed 3.55
TP _E/R ‘ml:ZeO * d (3.55)

The limits on r are from r:ro occurring at time equal to zero to

r=R occurring at time equal to TP.
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x =) dt (3.56)

Performing the necessary integration:

5 /2 3
2qV _r T 2V T
_ _ 0o o P 2  2q]ped _o P
R-r_ = 514 — Ve el o pmat -k)% 7 [(3.57)
mma o ks

Substituting in for T into equation (3.57),

P

2qV r d3 > -1
R-yr =29 Vo _‘l 9__+( ] . {3.58)

3m1-ra3

For the thin sheath and small angle approximation k is

nearly equal to:

k- —=2y —2424 (3.59)

When this expression for R is substituted back into equation (3. 58)

and rearranging terms yields:

2 -1
(1-S) . (3.60)
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By knowing d/a and VRZ/VO, the ratio of particle deflection,
AR, to r, can be determined using equation (3.60). It should be
noted that the deflection is strongly dependent on the ratio (d/a)3.

3.4 Error Analysis of the Planar-Disc Probe

The positive ion current to a planar-disc probe is com-
prised of two components as was the ion current to the spherical
probe. The ram current as explained in sections (2.1) and (2. 2)
is one component of the current. The other component is due
to the sheath effects, and is caused by the ions which are
deflected to the collector plate as they traverse the sheath.

It can be shown that the sheath current, Is’ is given by:

2
_ AR 2
Is = anVR( (—i_—;)—+ 1) T T - Tr (3.61)

where AR/rO is given by equation (3.60) and r is the radius
o)

of the collector. The total ion current can then be written

2

AR
R (ro thr Lo (3.62)

IT = qNaV

An effective area can be defined as in the case of the spherical
probe. Hence, equation (3.62) can be rewritten:
(3.63)

Ip = aNaVpa 4
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where

2
[Q—+ 1) ™ (3.64)
The error introduced by the sheath current is given by equation
(3.65).

-A
Per cent error = E = —e-ff——XIOO per cent (3.65)

Aeff

Substituting the expressions in for the respective areas,

equation (3. 65) becomes:

E :l:l - (%£+ 1)_21 x 100 per cent (3.66)
o

whereﬁ_ is given by equation (3. 60).
o
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CHAPTER IV
APPLICATION OF THE THEORY

4.1 Limiting Cases of the Error

A comparison can now be made between the spherical and
planar-disc probes. This analysis should help to illustrate the
relative advantage in using a planar probe to one of a curved

geometry. The two limiting cases of special interest are:
1. V2V 50
. R o
2. V Z/Vw%n-»oo.
. R o

Case (1) in reality never exists since ram probe theory
requires that the velocity of the probe be much greater than the
thermal ion velocity. Case (1) does, however, help to illustrate
what happens when the probe velocity is small and the probe
potential is high. This condition actually sets an upper bound on
the error due to the sheath current. For VRZ/VO = 0, equation
(3.27) reduces for the spherical probe giving a deflection ratio

equal to

Ax
= (4.1)
o

d
a+d

Similarly equation (3.60) for the planar-disc probe simplifies to

>
8

R

To

bl

) . (4.2)




The deflection ratios for both geometries are given in Table (4.1)
with the associated error, E, for various values of d/a. As
would be suspected, the error increases with increasing d/a.

An absolute upper limit can be placed on the error in-
troduced by the sheath current when d/a attains its maximum
value. For both ram probe theory, and this analysis to
hold, it is necessary that the ratiod/a is small. Therefore
it will be assumed that d/a is always less or equal to 0.5. Thus,
by Table (4.1), an upper bound for the error associated with the
sheath current is 44 per cent for the spherical probe to only

1.5 per cent for the planar-disc probe.

Case (2), VRZ/VO — o, is applicable whenever the
vehicle potential goes to zero, but may also be applied for
extremely high vehicle velocities. As VRZ/VO becomes
large, the deflection ratio for both the sphere and the disc
bg_come small. When VRZ/V0 = oo, both deflection ratios
equal zero, and the errors associated with each are then
zero. Thus, to minimize error it is of prime importance
to keep the ra’Fi_o of VRZ/VO as large as possible.

Figure 4.1 gives the deflection ratio for some
typical values of VRZ/Vo for both the spherical and planar-
di sc probe. From the deflection ratios, the error, E, is
determined and plotted in Figure (4.2).

4.2 Application to the Mother-Daughter Ion Probe

A planar-:disc, retarding potential ion probe was flown on
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MAXIMUM ERROR CONDITIONS FOR THE SPHERE

The Sphere with VRZ/VO =0
d/a Ax/xo Error
0.1 0.09

0.2 0.16 25%
0.3 0.23 33%
0.4 0.28 37%
0.5 0.33 449,

MAXIMUM ERROR CONDITIONS FOR THE DISC

The Planar Disc with VRZ/VO =0
d/a AR/ro Error
0.1 0. 0010 Less Than
0.2 0.0080 1%

0.3 0.0027

0.4 0.0064

0.5 0. 0125 1.5%
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a Javelin rocket from Wallops Island, Virginia on May 19, 1965.
This experiment was conducted in conjunction with the mother-
daughter project which was a separating-payload propagation
experiment for measuring electron densities.

The data reduction and analysis of the ion probe experiment
was carried out by Douglas J. Hoffman (1966). The probe and
associated electronics was designed by L. C. Hale and is
described in a detailed report, 1. C. FHale (1964).

The probe operated in both the ion and electron modes. A
set of four grids controls the operation of the probe, and is
shown in Figure 4.3 with the associated waveforms. In the ion
mode, a negative voltage suppresses photo-electrons and
secondary emission from the collector plate. Both the collector
and the planar-can including grid Gr1 are held at vehicle
potential. The linear sweep voltage which is applied to grids
GZ and G3 establjsh a uniform potential.

Figure (4.4) gives Hoffman's reduce data for the ion
density which was measured by the mother-daughter ion probe.
Several other sources of ion density data are also plotted. The
vehicle potential was experimentally determined as reported by
Hoffman and remained relatively constant atabout -1.5 ~olts
throughout the flight. Using this information, the sheath thickess for
the planar ion probe can be determined using equation (2.12).

The results are shown in Figure 4.5 as a function of altitude.

Dividing the sheath thickness by the probe radius a=3.8 cm, the
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ratio of d/a is found and given in Table (4.2).

Figure (4.6) gives, V_, the component of rocket

R
velocity which is normal to the face of the probe, for the ascent
of the NASA Javelin 8.29. Since the vehicle potential equals

-1.5 volts, the ratio of VRZ/Vo is determined and given in

Table (4.2).

Using equation (3.60), the deflection ratio AR/ro is
determined and given in Table (4.2). The deflection ratio
substituted into equation (3. 66) yields the error due to the
presence of the ion sheath. This is given in Table (4.2) and
plotted in Figure (4.7).

For altitudes below 500 km the error introduced by the
sheath is less than 2 per cent. Above 500 km the analysis no
longer is valid because of the large value of d/a. This is really
no shortcoming of the analysis; however, since ram probe
theory is no longer applicable when d/a approaches unity. This
analysis illustrates that the operation of planar-disc is extremely

insensitive to the presence of the ion sheath provided that the ratio

d/a is ketp less than unity.
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SUMMARY OF THE ERROR FOR THE MD ION PROBE

Altitude d(cm) d/a \% 2/V AR Error

(km) R %o
250 1.7 0.45 73x10° 0.0090 1%
300 2.1 0.55 71x10° 0.0125 1.2%
350 2.5 0.66 69x106 0.0128 1.4%
400 2.7 0.71 60x10° 0.0175 1.8%
450 2.9 0.76 59x10° 0.0190 1.9%
500 3.3 0.87 58x10° 0.0234 2.0%
700 4.4 1.15 27x10° ~ -~
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CHAPTER V
SUMMARY AND CONCLUSIONS

5.1 Geometry of the Probe

The analysis which was performed in Section (4.1)
indicates the superiority of the planar-disc geometry to that
of a sphere in the construction of high altitude ion probes. The
operation of the planar-disc was extremely insensitive to the
presence of the ion sheath when compared to the spherical
probe operating under similar conditions. For a ratio d/a equal
to 0.5 and the maximum error condition, VRZ/Vo = 0, the
error introduced by the presence of the sheath was shown to be
only 1.5 per cent for the disc while 44 per cent for the sphere.

5.2 Error Minimization of a High Altitude Ion Probe

For altitudes below 500 km, the sheath error is less
than 2.0 per cent. For altitudes above 500 km the sheath
thickness approaches the size of the probe and no estimate of
the error could be determined. If the ratio of d/a is not reduced
it is doubtful that ion densities will be measured accurately
by thi s method above 500 km because of the extreme complexity
of the large sheath situation. For this reason it is suggested
that an attempt be made to reduce the ratio d/a on future
rocket flights.

For a vehicle potential of -1. 5 volts, the sheath thickness
at 1000 km reaches a maximum value of about 10 cm. By

increasing the radius of the ion probe to 20 cm, the ratio of d/a
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would always be less than 0.5. Hence, ion densities could be
measured to 1000 km with less than 2 per cent error associated
to the sheath.

If payload capabilites prevent enlarging the probe, an
alternate method of reducing the ratio of d/a can be employed.
By applying a positive voltage to the face of the probe, the
vehicle potential can be made to approach zero. As ¢ o becomes
small, the sheath thickness becomes small, and in turn the
ratio of d/a become small. As the vehicle potential approaches
zero, electrons will no longer be repelled from the collector
plate. A grid biased sufficiently negative would be required to
repel electrons away from the collector. A grid introduces an
indeterminable amount of error due to its finite dimensions.

For this reason, this method should only be used as a last resort
in lowering the ratio of d/a.

5.3 Suggestions for Future Research

A rocket experiment should be designed and flown to
an altitude of 1000 km utilizing the suggestions discussed in the
previous section. From the experimental results it is hoped
that the accuracy of a high altitude ion probe of this type will be

substantiated.
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APPENDIX A

DETERMINING THE SHEATH THICKNESS FOR THE PLANAR-

DISC PROBE

From equation (3.38), the z-component of the electric

field can be written as:

E =2 +P2_x
z Ta €
o
where
A% 2V
koo 2 L _O d
d Ta 2‘eo

for a thin sheath. By Gauss's law the electric Ez at the edge

of the sheath, z=d must equal zero.

- d _1y.pe 9.
E, =V (G na)+§(2)'0
Solving for d, yields:
e V 2¢€ Vo 2 ZeOVO
d=-229 .29 )



